DAMPED - meaning and definition. What is DAMPED
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is DAMPED - definition

REDUCTION IN MOTION OF AN OSCILLATORY SYSTEM THROUGH FRICTIONAL FORCES
Dampening; Dampening effect; Overdamping; Underdamping; Critical damping; Over-damping; Under-damping; Dampen; Critically damped; Damping coefficient; Damped waves; Damping Ratio; Damping constant; Damped; Underdamped; Critical Damping; Damped sine wave; Overdamped; Undamped; Over-damped; Over damped; Damped sinusoid; Damping ratio; Damped wave
  • The effect of varying damping ratio on a second-order system.
  • Plot of a damped sinusoidal wave represented as the function <math>y(t) = e^{- t} \cos(2 \pi t)</math>
  • ''ζ'' < 1}}

Damped         
·Impf & ·p.p. of Damp.
Damping         
·p.pr. & ·vb.n. of Damp.
Damping         
Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation.

Wikipedia

Damping

Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples include viscous drag (a liquid's viscosity can hinder an oscillatory system, causing it to slow down; see viscous damping) in mechanical systems, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes (ex. Suspension (mechanics)). Not to be confused with friction, which is a dissipative force acting on a system. Friction can cause or be a factor of damping.

The damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. Many systems exhibit oscillatory behavior when they are disturbed from their position of static equilibrium. A mass suspended from a spring, for example, might, if pulled and released, bounce up and down. On each bounce, the system tends to return to its equilibrium position, but overshoots it. Sometimes losses (e.g. frictional) damp the system and can cause the oscillations to gradually decay in amplitude towards zero or attenuate. The damping ratio is a measure describing how rapidly the oscillations decay from one bounce to the next.

The damping ratio is a system parameter, denoted by ζ (zeta), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1).

The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering, chemical engineering, mechanical engineering, structural engineering, and electrical engineering. The physical quantity that is oscillating varies greatly, and could be the swaying of a tall building in the wind, or the speed of an electric motor, but a normalised, or non-dimensionalised approach can be convenient in describing common aspects of behavior.

Examples of use of DAMPED
1. The fighting damped celebrations of the anniversary.
2. Mosques broadcast pleas for the shooting to stop, but the crowds‘ enthusiasm could not be damped.
3. Late last night small fires in the warehouse were still being damped down.
4. His comments further damped speculation that the ECB might soon cut interest rates.
5. Speculation was not damped by both companies‘ refusal to comment on the merger talk.